Learning-Based WiFi Traffic Load Estimation in NR-U Systems
نویسندگان
چکیده
The unlicensed spectrum has been utilized to make up the shortage on frequency in new radio (NR) systems. To fully exploit advantages brought by bands, one of key issues is guarantee fair coexistence with WiFi reach this goal, timely and accurate estimation traffic loads an important prerequisite. In paper, a machine learning (ML) based method proposed detect number users bands. An unsupervised Neural Network (NN) structure applied filter detected transmission collision probability spectrum, which enables NR precisely rectify measurement error estimate active users. Moreover, NN trained online related parameters rate are jointly optimized adaptively high accuracy. Simulation results demonstrate that compared conventional Kalman Filter detection mechanism, approach lower complexity can achieve more stable estimation.
منابع مشابه
channel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Cognitive Load Estimation for Optimizing Learning within Intelligent Tutoring Systems
This paper presents a guided learning strategy model for dynamic pedagogical tailoring within intelligent tutoring systems (ITS). The proposed model is based on the integration of the cognitive load theory within an ITS architecture. Our approach takes into account the cognitive limitations of the student in order to offers personalised learning via instructional guidance.
متن کاملTransfer Learning for WiFi-based Indoor Localization
The WiFi-based indoor localization problem (WILP) aims to detect the location of a client device given the signals received from various access points. WILP is a complex and very important task for many AI and ubiquitous computing applications. A major approach to solving this task is through machine learning, where upto-date labeled training data are required in a large scale indoor environmen...
متن کاملMultiagent based interpolation system for traffic condition by estimation/learning
We propose a multiagent based interpolation system for traffic conditions that includes estimation and learning agents. These agents are allocated to all the road links. The Normalized Velocity (NV) is used in this system. Estimation agents renew the NV for each road link, and learning agents renew the weight values for estimation. The weight values can be calculated by multivariate analysis. E...
متن کاملMachine Learning for Beam Based Mobility Optimization in NR
One option for enabling mobility between 5G nodes is to use a set of area-fixed reference beams in the downlink direction from each node. To save power these reference beams should be turned on only on demand, i.e. only if a mobile needs it. An User Equipment (UE) moving out of a beam’s coverage will require a switch from one beam to another, preferably without having to turn on all possible be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
سال: 2021
ISSN: ['1745-1337', '0916-8508']
DOI: https://doi.org/10.1587/transfun.2020eap1063